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Abstract

This work presents a systematic review of
dataset artifacts in the Stanford Question An-
swering Dataset (SQuAD) through comprehen-
sive analysis of an ELECTRA-small model.
Using model ablations, spurious correlation de-
tection, and adversarial testing, critical weak-
nesses are uncovered: performance collapse on
SQuAD-Adversarial, position bias, and dispar-
ities between question types (e.g., "Why" vs
"When"). Two mitigation strategies are pro-
posed and evaluated: Adversarial Training and
Question-Type Aware Loss Reweighting. Ad-
versarial training improved robustness by 1.4x
(50.1% to 72.5% EM) on adversarial data, suc-
cessfully replicating the findings of Jia and
Liang (2017). Meanwhile, the Question-Type
Aware Loss Reweighting strategy successfully
improved performance on the standard SQuAD
dataset to 77.2% EM (+1.0% over baseline),
demonstrating that targeted loss penalties can
improve general comprehension without de-
grading performance on easier examples.

1 Introduction

Today, pre-trained language models have achieved
remarkable performance on reading comprehen-
sion benchmarks, increasingly reaching close to
human-level scores. However, recent work has
shown that these models often exploit dataset ar-
tifacts, which are spurious statistical patterns that
correlate with correct answers but do not reflect
genuine understanding (Gururangan et al., 2018;
McCoy et al., 2019). These shortcuts enable mod-
els to achieve high accuracy without developing the
robust reasoning capabilities that the benchmarks
purport to measure.

The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) has been widely
used in the advancement of machine reading com-
prehension research. Yet, as the authors also ac-
knowledged, understanding its limitations is crucial

for developing genuinely capable systems. Previ-
ous work has identified various issues: Jia and
Liang (2017) showed that simple adversarial sen-
tences can fool SQuUAD models, while Kaushik and
Lipton (2018) demonstrated that models can par-
tially succeed using only questions or passages in
isolation.

This work conducts a comprehensive analysis of
dataset artifacts in SQuAD using an ELECTRA-
small model (Clark et al., 2020). Three comple-
mentary approaches are employed: (1) model ab-
lations to understand which inputs are necessary,
(2) spurious correlation detection to identify statis-
tical shortcuts, and (3) adversarial testing to probe
robustness. The findings explain that models ex-
ploit multiple artifacts simultaneously, achieving
seemingly strong performance while failing at fun-
damental comprehension tasks.

2 Experimental Setup

2.1 Model and Training

ELECTRA-small (Clark et al., 2020) is used in
this project, a pre-trained transformer with 14M pa-
rameters. ELECTRA shares BERT’s architecture
but uses a more sample-efficient pre-training ob-
jective, making it suitable for resource-constrained
analysis. The model is fine-tuned on SQuAD v1.1
(Rajpurkar et al., 2016) for 3 training epochs with
batch size 64, achieving a baseline performance
of 76.2% exact match (EM) and 84.6% F1 on the
development set.

2.2 Analysis Methods

All analyses presented in this work are conducted
on the SQuAD v1.1 validation set to ensure consis-
tent evaluation across different experiments. Three
categories of analysis are conducted to comprehen-
sively understand model behavior:



2.2.1 Model Ablations

Following Kaushik and Lipton (2018), the model
is evaluated under degraded input conditions:

* Question-only: Only questions are provided,
with passages masked

* Passage-only: Only passages are provided,
with questions masked

¢ First-sentence-only: Only the first sentence
of each passage is provided

¢ Shuffled sentences: Sentence order is ran-
domly permuted

Note that the original research by Kaushik and
Lipton (2018) only examined question-only and
passage-only conditions. Two additional condi-
tions (first-sentence-only and shuffled sentences)
were added for a more comprehensive comparison.

2.2.2 Spurious Correlation Analysis

Inspired by the competency problems framework
(Gardner et al., 2021), a statistical analysis was
conducted which includes:

* Answer position distribution analysis

¢ Performance variation examination across
question types and answer lengths

2.2.3 Adversarial Testing

The baseline model is evaluated using the adversar-
ial challenge set created by Jia and Liang (2017).
This dataset contains four main variants, and two of
them were used in this analysis: AddSent, where
up to five candidate adversarial sentences are gener-
ated (containing words overlapping with the ques-
tion but not answering it) and the sentence that most
confuses the model is selected; and AddOneSent,
where a single candidate adversarial sentence is ran-
domly selected without querying the model. Both
variants test whether models rely on superficial
lexical matching or genuine comprehension.

3 Analysis
3.1 Model Ablations

The ablation results reveal patterns about what
information the model actually uses to answer
questions. As expected, question-only (4.1%) and
passage-only (13.1%) performance is very low, con-
firming that both inputs are necessary. The first-
sentence-only accuracy of 21.5% indicates that ap-
proximately one-fifth of answers can be found in

Ablation Type Accuracy vs. Full
Full Model 76.2% -

Shuffled sentences 59.3% -16.9%
First-sentence-only 21.5% -54.7%
Passage-only 13.1% -63.1%
Question-only 4.1% -72.1%

Table 1: Model performance under various ablations.
The 16.9% drop with shuffled sentences indicates some
reliance on discourse structure, though performance
remains high at 59.3%.

the first sentence alone, suggesting some position
bias in answer distribution.

The shuffled sentence result shows a 16.9% drop
(from 76.2% to 59.3%), indicating that discourse
structure does contribute to model performance.
The model achieves 59.3% accuracy with randomly
ordered sentence. The reason behind this could
be that it relies on local lexical matching between
questions and individual sentences rather than un-
derstanding argumentative flow across the entire
passage. This finding aligns with prior observa-
tions by Chen and Durrett (2019) that reading com-
prehension models often fail to fully leverage dis-
course coherence, instead treating passages par-
tially as collections of independent sentences with
some sensitivity to ordering.

3.2 Statistical Shortcuts and Spurious
Correlations

3.2.1 Answer Position Bias

Position Metric Percentage
In first third of passage 43.9%
In first half of passage 60.0%
In first sentence 31.1%
Median sentence index 1.0
Average relative position 0.4

Table 2: Answer position statistics showing bias toward
passage beginnings.

The position analysis confirms bias: 43.9% of
answers appear in the first third of passages, with
a median sentence index of 1.0. This distribution
bias, previously documented by Min et al. (2019),
could potentially explain why the model maintains
reasonable performance in the first-sentence-only
ablation (21.5%). When answers are consistently
located near passage beginnings, the model can



achieve some accuracy by focusing attention on
early positions without reading comprehensively.

3.2.2 Question Type Performance Disparities

Question Type Count EM F1

When 696 872 9l1.1
Who 1,096 84.0 87.4
Other 2,337 774 85.0
How 1,090 75.3 &5.1
What 4,767 737 83.1
Where 433 69.8 82.5
Why 151 517 749

Table 3: Baseline performance by question type. "Why"
questions requiring causal reasoning show 35.5% lower
EM than "When" questions.

Question type analysis unfolds performance dis-
parities, consistent with findings by Sugawara et
al. (2018) that certain question types follow more
predictable patterns. The performance on "When"
and "Who" questions (87.2% and 84.0% respec-
tively) indicates strong pattern recognition for enti-
ties and temporal expressions, which often follow
predictable linguistic patterns. "When" questions
achieve 87.2% EM while "Why" questions only
reach 51.7%. This 35.5% gap suggests that the
model is better at pattern matching for dates and en-
tities but struggles with reasoning, which requires
understanding causal relationships and cannot be
answered through simple entity extraction. The
model’s failure on these questions reveals its re-
liance on shallow pattern matching rather than se-
mantic comprehension.

Qualitative Analysis of "Why' Question Fail-
ures Examining specific failures on "Why" ques-
tions shows systematic patterns in the model’s rea-
soning deficits:

Example 1 - Negation Blindness:

* Question: Why aren’t the examples of bour-
geois architecture visible today?

* Model Predicted: “restored by the communist
authorities after the war”

* Correct Answer: “not restored by the commu-
nist authorities”

The model selects a span with high lexical overlap
but misses the critical negation “not.”
Example 2 - Shallow Lexical Matching:

* Question: Why did Westinghouse not secure
a patent for a similar motor?

* Model Predicted: “Tesla had a viable AC mo-
tor and related power system”

* Correct Answer: “decided Tesla’s patent
would probably control the market”

The model retrieves context describing Tesla’s in-
vention but fails to identify the causal explanation
for Westinghouse’s decision, showing inability to
distinguish description from explanation.

3.2.3 Answer Length Impact

Answer Length Count EM F1

Short (1-2 words) 6,309 80.1 85.8
Medium (3-5 words) 3,039 759 85.5
Long (6-10 words) 871 60.1 78.1
Very Long (>10 words) 351 479 704

Table 4: Performance degradation with answer length.
Very long answers show 32.2% lower EM than short
answers.

Performance degrades dramatically with answer
length: from 80.1% EM for 1-2 word answers to
47.9% for answers exceeding 10 words. This indi-
cates the model struggles with complex, multi-part
answers requiring synthesis, grouping, or summa-
rization. Short answers typically correspond to
named entities or dates, which the model is better
at detecting through shallow matching.

3.3 Adbversarial Vulnerability
3.3.1 Official SQuAD-Adversarial Benchmark

The baseline model was evaluated on the offi-
cial SQuAD-Adversarial dataset (Jia and Liang,
2017), which adds adversarially-crafted distractor
sentences to passages.

Dataset EM F1
SQuAD v1.1 (Original) 76.2 84.6
SQuAD-Adversarial (AddSent) 50.1 57.0

SQuAD-Adversarial (AddOneSent) 60.1 67.6

Table 5: Baseline performance on adversarial test sets.
The AddSent variant, which selects the most confus-
ing distractor, causes a more severe performance drop
(-26.1%) than AddOneSent (-16.1%), confirming the
model’s vulnerability to targeted lexical confusion.



The results demonstrate substantial vulnerabil-
ity to adversarial distractors. On the AddSent
variant, where the most confusing distractor sen-
tence is selected, performance drops from 76.2% to
50.1% EM. Even the AddOneSent variant, which
randomly selects a distractor without targeting the
model’s weaknesses, causes a 16.1% drop. This
confirms that the model relies heavily on superficial
lexical matching rather than robust comprehension,
as demonstrated by Jia and Liang (2017) in their
original adversarial challenge set work. The larger
drop on AddSent suggests that when distractor
sentences are specifically designed to maximize
lexical overlap with questions, the model’s perfor-
mance degrades more severely.

Qualitative Analysis of Adversarial Failures
Examining specific adversarial failures reveals how
distractor sentences exploit the model’s lexical
matching strategy. Two representative examples
illustrate the failure patterns:

Example 1 - Lexical Trap with Distractor:

* Context: ... Fragments of Hadrian’s Wall are
still visible in parts of Newcastle, particularly
along the West Road...”

* Distractor added: “Aliens has fragments in-
visible in places around Leeds even today.”

* Question: Whose wall has fragments visible
in places around Newcastle even today?

e Correct Answer: “Hadrian’s”
* Model Predicted: “Aliens”

Despite the nonsensical nature of the distractor
(“Aliens has fragments invisible), the model is
misled by the high lexical overlap between the
question (“fragments visible”) and the distractor.
This demonstrates pure pattern matching without
semantic verification.

Example 2 - Numerical Confusion:

e Context: “The Saxon Garden...There are over
100 different species of trees...”

* Distractor added: “Over 600 species of trees
can be found in the Anglo-Saxon Pavilion.”

* Question: Over how many species of trees can
be found in the Saxon Garden?

e Correct Answer: “100”

e Model Predicted: “600”

The model is confused by the higher lexical over-
lap with “Saxon” (matching both “Saxon Garden”
in the question and “Anglo-Saxon Pavilion” in the
distractor) and extracts the wrong numerical value,
ignoring that the distractor refers to a different lo-
cation.

These examples reveal that the model prioritizes
surface-level word matching over semantic coher-
ence, failing to verify whether spans actually an-
swer the question being asked.

4 Mitigation Strategies and Results

Based on the analysis, two targeted interven-
tions are proposed to address the identified failure
modes:

4.1 Strategy 1: Adversarial Training for
Robustness

To address the performance drop on SQuAD-
Adversarial, adversarial training was implemented
using a combination of original SQuAD and adver-
sarial examples. To replicate the best-performing
model in Jia and Liang (2017)’s study, the model
was trained on an “Augmented” dataset comprising
the original SQuAD training data plus the official
AddSent adversarial data. The training data was
obtained from the GitHub repository associated
with the paper (Jia and Liang, 2017).

* Training Data: Standard SQuAD v1.1 train-
ing set + AddSent adversarial examples (up-
sampled 5x to ensure sufficient learning signal
from adversarial patterns).

* Goal: Verify whether the model can learn
to ignore structural distractors (sentences ap-
pended to the end of passages) when explicitly
trained on them.

* Training Configuration: The model was
trained for 3 epochs with batch size 16.

The key difference from Jia and Liang (2017)’s
original approach lies in the base model architec-
ture: while the original work used BiDAF (Bidi-
rectional Attention Flow), a recurrent architec-
ture, the model used here, ELECTRA-small, is
a transformer-based model with pre-trained repre-
sentations. This architectural difference enables
stronger baseline performance, as transformers can



capture longer-range dependencies and richer con-
textual representations through self-attention mech-
anisms.

0 Robustness Recovery via Adversarial Training

80 +16.4%
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Figure 1: Impact of Adversarial Training.
Table 6 presents the results of the replication

experiment. Training on the augmented dataset
resulted in a dramatic recovery of performance.

Model Eval Set EM F1

Baseline AddSent 50.1 57.0
Baseline AddOneSent 60.1 67.6
Replicated AddSent 725 824
Replicated AddOneSent 76.5 853

BiDAF (Jia & Liang, 2017) AddSent 70.4

Table 6: Adversarial Training Results.

The adversarial training achieved substantial
performance recovery on both test sets. On
the AddSent variant, performance improved by
22.4% (50.1% — 72.5% EM). Similarly, on the
AddOneSent variant, performance increased by
16.4% (60.1% — 76.5% EM). The model not only
effectively restored performance to near-baseline
levels, but even outperformed the 70.4% EM re-
ported by Jia and Liang (2017). The superior per-
formance compared to the original research can
be attributed to both the ELECTRA-small model
and its more powerful pre-trained representations,
which provide richer semantic understanding com-
pared to BiDAF’s task-specific recurrent architec-
ture. Pre-training on large corpora could help the
model to develop more robust language understand-
ing that better generalizes to adversarial perturba-
tions. So far, the results confirm that while mod-
els are naturally brittle to distractors, they possess
sufficient capacity to learn invariance to specific
structural artifacts (such as distractor sentences)
when those patterns are adequately represented in
the training distribution.

4.2 Strategy 2: Question-Type Aware Loss

To address the specific reasoning deficits found
in Section 3.2 (where "Why" questions underper-
formed "When" questions by 35.5%), a Question-
Type Aware Loss function was implemented. In
the baseline and other standard training procedures,
all errors are treated equally. The custom trainer
classifies questions on-the-fly (Who, What, Why,
etc.) and dynamically scales the cross-entropy loss:

N
Liotal = %Zwtype(i) Loy, 9i) (1)
i=1
Higher penalties were assigned to reasoning types
(w = 5.0 for "Why", w = 3.0 for "How") to incen-
tivize the model to prioritize complex reasoning
over simple pattern matching.

Table 7 presents the results of the Question-Type
Aware Loss training. Surprisingly, this method not
only improved competence on reasoning questions
but also improved the overall performance on the
standard SQuAD validation set.

Model Dataset EM F1
Baseline SQuAD vl.l 76.2 84.6
Weighted Loss SQuADvl.1 77.2 85.1
Improvement - +1.0 +0.5
Table 7: Results of Question-Type Aware Loss

Reweighting on the standard SQuAD validation set.

The question-type aware loss reweighting
achieved an overall EM of 77.2% and F1 of 85.1%,
outperforming the baseline model on the clean
dataset. This result is significant because robust-
ness interventions (such as adversarial training)
typically degrade performance on clean data, i.e.,
the "robustness tax." However, the weighted loss
approach improved overall competence, suggesting
that by forcing the model to attend to complex rea-
soning questions, the approach improves its general
text representation without sacrificing performance
on simple factual questions.

The breakdown by question type demonstrates
that the weighted loss successfully improved per-
formance across most types, with "Why" questions
showing the largest gains. "Why" questions im-
proved by 2.6% EM (51.7% — 54.3%), validating
the effectiveness of the 5x loss weighting in di-
recting the model’s learning toward challenging
reasoning tasks. Other question types also bene-
fited: "How" questions gained 1.6% EM, "Where"



Performance Gains by Question Type
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Figure 2: Question-Type Performance.

Type Baseline Weighted Change
EM Fl EM Fl1 AEM AF1
Why 517 749 543 756  +2.6 +0.6
Where 69.8 825 71.1 83.1 +1.4 +0.5
Who 84.0 874 851 884  +1.1 +1.0
What 737 83.1 748 837 +1.0 +0.6
How 753 851 769 86.1 +1.6 +1.0
Other 774 850 780 852 +0.6 +0.3
When 872 91.1 872 912  +0.0 +0.1

Table 8: Performance changes by question type after
loss reweighting.

gained 1.4% EM, "Who" gained 1.1% EM, and
"What" gained 1.0% EM. Notably, "When" ques-
tions remained stable (+0.0% EM), indicating
that factual pattern-matching capabilities were pre-
served. These broad improvements across question
types, combined with the targeted gain on "Why"
questions, show that emphasizing difficult reason-
ing during training enhances the model’s general
comprehension abilities without sacrificing perfor-
mance on simpler factual questions.

4.3 Discussion and Limitations

Despite improvements from the baseline, several
limitations persist. While adversarial training
substantially improved robustness on the specific
Addsent set (50.1% — 72.5% EM), this success
is narrowly targeted to structural distractors ap-
pended to passage ends. The approach does not
guarantee generalization to other adversarial chal-
lenges, such as word-level substitutions, paraphras-
ing, or distractors placed within passages. The
model has learned to handle a specific artifact pat-
tern, but may remain vulnerable to novel adversar-
ial strategies that exploit different weaknesses.
Due to the limited scope and time constraint of
this project, not all artifacts explored in the analysis
could be mitigated. The fundamental dataset bias
(43.9% of answers in the first third of passages) re-
mains in the training distribution. Without targeted

debiasing strategies such as answer position aug-
mentation or explicit positional regularization, the
model likely continues to exhibit some degree of
position bias. Future work should directly measure
and address this bias through techniques like coun-
terfactual data augmentation or position-invariant
training objectives.

Additionally, performance on reasoning ques-
tions such as "Why" (54.3% EM after training)
remains significantly lower than factoid questions
like "When" (87.2% EM). While the 2.6% improve-
ment on "Why" questions demonstrates that the
weighted loss approach has meaningful effect, the
gain is still modest and insufficient to close the
32.9% gap between "When" and "Why" perfor-
mance. This suggests that loss reweighting alone
cannot fully address the reasoning deficit. The
model may lack the architectural capacity or train-
ing signal necessary for genuine causal reason-
ing. More fundamental interventions such as ex-
plicit reasoning modules, multi-hop architectures,
or training on datasets specifically designed to re-
quire reasoning, rather than pattern matching, may
be necessary.

5 Conclusion

This analysis reveals that ELECTRA-small’s strong
performance on SQuAD (76.2% EM) conceals fun-
damental brittleness: a 26.1% drop on adversarial
examples, substantial degradation when discourse
structure is disrupted (16.9% drop with shuffled
sentences), and a 35.5% gap between factual and
reasoning questions. These failures stem from sys-
tematic reliance on surface-level shortcuts, such as
position bias, lexical overlap, and spurious corre-
lations, rather than genuine comprehension. The
two targeted interventions demonstrated partial suc-
cess. Adversarial training recovered robustness on
structural distractors (50.1% — 72.5% EM), suc-
cessfully replicating Jia and Liang (2017) and il-
lustrating that models can learn to handle specific
artifacts when explicitly trained on them. Question-
Type Aware Loss Reweighting improved overall
performance (76.2% — 77.2% EM) and achieved
meaningful gains on "Why" questions (+2.6% EM),
along with improvements across most other ques-
tion types, showing that weighted loss penalties can
enhance reasoning performance while maintaining
or improving factual question accuracy.

The persistent limitations, i.e., narrow adversar-
ial generalization, continued large reasoning gap



(32.9% between "When" and "Why" questions even
after targeted training), and likely continued posi-
tion bias, indicate that current architectures fun-
damentally lack the capacity for robust reading
comprehension. The reactive nature of adversarial
training, which requires foreknowledge of attack
patterns, highlights the need for proactive robust-
ness strategies.

Future work should prioritize: (1) Architec-
tural innovations that incorporate explicit reason-
ing modules or causal inference mechanisms, mov-
ing beyond pure span extraction toward multi-step
inference systems; (2) Training objectives that di-
rectly penalize shortcut learning through counter-
factual data augmentation, contrastive learning be-
tween related examples, or objectives that reward
semantic understanding over surface matching; (3)
Comprehensive evaluation protocols that test multi-
ple dimensions of robustness simultaneously, in-
cluding adversarial perturbations, reasoning re-
quirements, and position/pattern debiasing, rather
than optimizing for single metrics; and (4) Hybrid
approaches that combine neural pattern recogni-
tion with symbolic reasoning systems capable of
logical verification and multi-hop inference.
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